พุยพุย Free Cursors

วันพุธที่ 9 กันยายน พ.ศ. 2558

ความสัมพันธ์และฟังก์ชัน

ความสัมพันธ์และฟังก์ชัน


1.1ความสัมพันธ์และฟังก์ชัน    
          1.1.1ความสัมพันธ์   
           ในชีวิตประจำวันจะพบสิ่งที่มีความเกี่ยวข้องกันอยู่เสมอ  เช่น  สินค้ากับราคาสินค้าคนไทยทุกคนจะต้องมีเลขประจำตัวประชาชนเป็นของตนเอง  ตัวอย่างที่กล่าวมาเป็นตัวอย่างที่แสดงความสัมพันธ์ของสิ่งสองสิ่งที่มาเกี่ยวข้องกันภายใต้กฎเกณฑ์อย่างใดอย่างหนึ่ง  สำหรับในวิชาคณิตศาสตร์มีสิ่งที่แสดงความสัมพันธ์ดังตัวอย่างต่อไปนี้ อ่านเพิ่มเติม

จำนวนจริง

จำนวนจริง

จำนวนจริง
4.1จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ  ได้แก่
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย  I
                   I = {1,2,3…}
เซตของจำนวนเต็มลบ  เขียนแทนด้วย  I
เซตของจำนวนเต็ม เขียนแทนด้วย I อ่านเพิ่มเติม

การให้เหตุผล

การให้เหตุผลแบ่งได้ 2 แบบดังนี้                     
1. การให้เหตุผลแบบอุปนัย
2. การให้เหตุผลแบบนิรนัย
 
 1. การให้เหตุผลแบบอุปนัย
           การให้เหตุผลแบบอุปนัย  เป็นการให้เหตุผลโดยอาศัยข้อสังเกตหรือผลการทดลองจากหลาย ๆ ตัวอย่าง มาสรุปเป็นข้อตกลง หรือข้อคาดเดาทั่วไป  หรือคำพยากรณ์ ซึ่งจะเห็นว่าการจะนำเอาข้อสังเกต   หรือผลการทดลองจากบางหน่วยมาสนับสนุนให้ได้ข้อตกลง หรือ ข้อความทั่วไปซึ่งกินความถึงทุกหน่วย ย่อมไม่สมเหตุสมผล  เพราะเป็นการอนุมานเกินสิ่งที่กำหนดให้ ซึ่งหมายความว่า  การให้เหตุผลแบบอุปนัยจะต้องมีกฎของความสมเหตุสมผลเฉพาะของตนเอง  นั่นคือ  จะต้องมีข้อสังเกต หรือผลการทดลอง หรือ มีประสบการณ์ที่มากมายพอที่จะปักใจเชื่อได้  แต่ก็ยังไม่สามารถแน่ใจในผลสรุปได้เต็มที่ เหมือนกับการให้เหตุผลแบบนิรนัย อ่านเพิ่มเติม

เซต

เซต

เซต  เป็นคำที่ใช้บ่งบอกถึงกลุ่มของสิ่งต่างๆ และเมื่อกล่าวถึงกลุ่มใดแน่นอนว่าสิ่งใดอยู่ในกลุ่ม สิ่งใดไม่อยู่ในกลุ่ม เช่น
       เซตสระในภาษาอังกฤษ  หมายถึง  กลุ่มของอังกฤษ  a, e, i, o และ u
       เซตของจำนวนนับที่น้อยกว่า 10 หมายถึง  กลุ่มตัวเลข 1,2,3,4,5,6,7,8,และ9
        สิ่งที่ในเชตเรียกว่า  สมาชิก  ( element หรือ members )
การเขียนเซต
การเขียนเซตอาจเขียนได้ 2  แบบ อ่านเพิ่มเติม